
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Defining Process

 Process Scheduling

 Operations on Processes

 Interprocess Communication (IPC)

 Examples of IPC Systems

 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including:

 scheduling

 creation and termination

 and communication

 To explore interprocess communication using

 shared memory, and

 message passing

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – “jobs”

 Time-shared systems – “user programs” or “tasks”

 We will use the terms job and process almost interchangeably

 Process – is a program in execution (informal definition)

 Program is passive entity stored on disk (executable file), process

is active

 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI, command line entry of its

name, etc

 One program can be several processes

 Consider multiple users executing the same program

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process In Memory

 In memory, a process consists of multiple

parts:

 Program code, also called text section

 Current activity including

 program counter

 processor registers

 Stack containing temporary data

 Function parameters, return

addresses, local variables

 Data section containing global

variables

 Heap containing memory dynamically

allocated during run time

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

 As a process executes, it changes state

 new: The process is being created

 ready: The process is waiting to be assigned to a processor

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Each process is represented in OS by PCB

 PCB - info associated with the process

 Also called task control block

 Process state – running, waiting, etc

 Program counter – location of

instruction to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities,

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used,

clock time elapsed since start, time

limits

 I/O status information – I/O devices

allocated to process, list of open files

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution

 One task at a time

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple tasks at a time

 Multiple threads of control -> threads

 PCB must be extended to handle threads:

 Store thread details

 Multiple program counters

 Details on threads in the next chapter

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Goa of multiprogramming:

 Maximize CPU use

 Goal of time sharing:

 Quickly switch processes onto CPU for time sharing

 Process scheduler – needed to meet these goals

 Selects 1 process to be executed next on CPU

 Among available processes

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queuing diagram

 a common representation of process scheduling

 represents queues, resources, flows

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Scheduler – component that decides how processes are selected from these

queues for scheduling purposes

 Long-term scheduler (or job scheduler)

 On this slide - “LTS” (LTS is not a common notation)

 In a batch system, more processes are submitted then can be executed in

memory

 They are spooled to disk

 LTS selects which processes should be brought into the ready queue

 LTS is invoked infrequently

 (seconds, minutes)  (may be slow, hence can use advanced algorithms)

 LTS controls the degree of multiprogramming

 The number of processes in memory

 Processes can be described as either:

 I/O-bound process

 Spends more time doing I/O than computations, many short CPU bursts

 CPU-bound process

 Spends more time doing computations; few very long CPU bursts

 LTS strives for good process mix

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Short-Term Scheduler

 Short-term scheduler (or CPU scheduler)

 Selects 1 process to be executed next

 Among ready-to-execute processes

– From the ready queue

 Allocates CPU to this process

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently

 (milliseconds)  (must be fast)

 Hence cannot use costly selection logic

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple

programming needs to decrease

 Used by time-sharing OSes, etc

 Too many programs poor performance users quit

 Key idea:

 Reduce the degree of multiprogramming by swapping

 Swapping removes a process from memory, stores on

disk, brings back in from disk to continue execution

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 Context of a process represented in its PCB

 Context switch

 When CPU switches to another process, the system must:

1. save the state of the old process, and

2. load the saved state for the new process

 Context-switch time is overhead

 The system does no useful work while switching

 The more complex the OS and the PCB 

 the longer the context switch

 more details in Chapter 8

 This overhead time is dependent on hardware support

 Some hardware provides multiple sets of registers per CPU

 multiple contexts are loaded at once

 switch requires only changing pointer to the right set

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination,

 and so on as detailed next

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 A (parent) process can create several (children) processes

 Children can, in turn, create other processes

 Hence, a tree of processes forms

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing options (of process creation)

 Parent and children share all resources

 Children share subset of parent’s resources

 One usage is to prevent system overload by too many

child processes

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space options

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 Child is a copy of parent’s address space

– except fork() returns 0 to child and nonzero to parent

 exec() system call used after a fork() to replace the

process’ memory space with a new program

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.

 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some OSes don’t allow child to exists if its parent has terminated

 cascading termination - if a process terminates, then all its

children, grandchildren, etc must also be terminated.

 The termination is initiated by the operating system

 The parent process may wait for termination of a child process by
using the wait()system call.

 The call returns status information and the pid of the terminated
process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie

 All its resources are deallocated, but exit status is kept

 If parent terminated without invoking wait , process is an orphan

 UNIX: assigns init process as the parent

 Init calls wait periodically

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

 Processes within a system may be independent or cooperating

 When processes execute they produce some computational results

 Independent process cannot affect (or be affected) by such results of

another process

 Cooperating process can affect (or be affected) by such results of

another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 For fast exchange of information, cooperating processes need some

interprocess communication (IPC) mechanisms

 Two models of IPC

 Shared memory

 Message passing

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory is shared among the processes that
wish to communicate

 The communication is under the control of the users
processes, not the OS.

 Major issue is to provide mechanism that will allow the user
processes to synchronize their actions when they access
shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem
 Producer-consumer problem – a common paradigm for cooperating

processes

 Used to exemplify one common generic way/scenario of

cooperation among processes

 We will use it to exemplify IPC

 Very important!

 Producer process

 produces some information

 incrementally

 Consumer process

 consumes this information

 as it becomes available

 Challenge:

 Producer and consumer should run concurrently and efficiently

 Producer and consumer must be synchronized

 Consumer cannot consume an item before it is produced

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared-memory solution to producer-consumer

 Uses a buffer in shared memory to exchange information

 unbounded-buffer: assumes no practical limit on the buffer size

 bounded-buffer assumes a fixed buffer size

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;

while (true) {

next_produced = ProduceItem();

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing, no space in buffer */

//wait for consumer to get items and

//free up some space

/* enough space in buffer */

buffer[in] = next_produced; //put item into

buffer

in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing, no new items produced

*/

//wait for items to be produced

/* some new items are in the buffer */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

ConsumeItem(&next_consumed);

}

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity (buffer size) of a link?

 Is the size of a message that the link can accommodate fixed or

variable?

 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 Logical implementation of communication link

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of a direct communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of an indirect communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing issues

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either

 Blocking, or

 Non-blocking

 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is received

 Blocking receive -- the receiver is blocked until a message is

available

 Non-blocking is considered asynchronous

 Non-blocking send -- the sender sends the message and continues

 Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

 Different combinations possible

 If both send and receive are blocking – called a rendezvous

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Producer-consumer is trivial via rendezvous

message next_produced;

while (true) {

ProduceItem(&next_produced);

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

ConsumeItem(&next_consumed);

}

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering in Message-Passing

 Queue of messages is attached to the link.

 Implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

- Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

- Sender must wait if link full

3. Unbounded capacity – infinite length

- Sender never waits

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

